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Abstract

We prove that any non-symmetric three-dimensional homogeneous Lorentzian manifold is isometric to a Lie group equipped
with a left-invariant Lorentzian metric. We then classify all three-dimensional homogeneous Lorentzian manifolds.
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1. Introduction

A pseudo-Riemannian manifold (M, g) is homogeneous provided that, for any points p, q ∈ M , there exists an
isometry φ such that φ(p) = q; it is locally homogeneous if there is a local isometry mapping a neighborhood of
p into a neighborhood of q [12]. We recall here a few examples of results concerning homogeneous and locally
homogeneous manifolds, in the Riemannian and pseudo-Riemannian case (in particular, in Lorentzian geometry).

Gadea and Oubiña [9] introduced the notion of homogeneous pseudo-Riemannian structure, in order to obtain a
characterization of reductive homogeneous pseudo-Riemannian manifolds, similar to the one given for homogeneous
Riemannian manifolds by Ambrose and Singer [1] (see also [19]).

A pseudo-Riemannian manifold (M, g) is curvature homogeneous up to order k if, for any points p, q ∈ M , there
exists a linear isometry φ : Tp M → Tq M such that φ ∗ (∇ i R(q)) = ∇

i R(p) for all i ≤ k. A locally homogeneous
space is curvature homogeneous of any order k. Conversely, if k is sufficiently high, curvature homogeneity up to
order k implies local homogeneity. This result was proved by Singer [17] for Riemannian manifolds. Through the
equivalence theorem for G-structures due to Cartan and Sternberg [18], Singer’s result can be extended to the pseudo-
Riemannian case.

Given a pseudo-Riemannian manifold (M, g), its Singer index kM is the smallest integer such that curvature ho-
mogeneity up to order k > kM implies local homogeneity. Singer’s construction [17] shows that kM ≤ (1/2)n(n − 1),
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where n = dim M . For Riemannian manifolds, this upper bound was improved by Gromov [10], who proved that
kM ≤ (3/2)n − 1.

In some cases, these estimates can be further improved. For example, if dim M = 2, then curvature homogeneity
(up to order 0) already implies local homogeneity. In [16], Sekigawa proved that a three-dimensional Riemannian
manifold, which is curvature homogeneous up to order one, is locally homogeneous. Curvature homogeneous
Lorentzian spaces have been investigated in several papers (see for example [2–4,6,7]). In particular, Bueken and
Vanhecke [4] gave examples of three-dimensional Lorentzian manifolds which are curvature homogeneous up to order
one but not locally homogeneous. In [3], Bueken and Djorić determined all three-dimensional Lorentzian manifolds
which are curvature homogeneous up to order one, and also showed that curvature homogeneity up to order two is
sufficient for a three-dimensional Lorentzian manifold to be homogeneous.

In [16], Sekigawa also proved that a three-dimensional connected, simply connected and complete homogeneous
Riemannian manifold is either symmetric or it is a Lie group endowed of a left-invariant Riemannian metric. Taking
into account the classification of three-dimensional Riemannian Lie groups given by Milnor [11], this result permits
one to determine all three-dimensional homogeneous Riemannian manifolds.

To our knowledge, while several interesting examples of three-dimensional homogeneous Lorentzian manifolds
are known [3,8,14,15], a complete classification result has not been given yet. The main purpose of this paper is to
prove the following

Theorem 1.1. Let (M, g) be a three-dimensional connected, simply connected, complete homogeneous Lorentzian
manifold. Then, either (M, g) is symmetric, or it is isometric to a three-dimensional Lie group equipped with a left-
invariant Lorentzian metric.

Theorem 1.1, together with the results on three-dimensional Lorentzian Lie groups obtained by Cordero and
Parker [8] and Rahmani [15], leads to the classification of three-dimensional homogeneous Lorentzian manifolds.

The paper is organized in the following way. Section 2 will be devoted to recalling some basic facts and results
about homogeneous pseudo-Riemannian structures. In Section 3 we shall prove Theorem 1.1. The classification of
three-dimensional homogeneous Lorentzian manifolds will be given in Section 4. In Section 5, we shall complete the
description of three-dimensional homogeneous Lorentzian manifolds, by classifying three-dimensional Lorentzian
symmetric spaces.

2. Preliminaries

Let M be a connected manifold and g a pseudo-Riemannian metric of signature (m, n) on M . We denote by ∇ the
Levi-Civita connection of (M, g) and by R its curvature tensor. The following definition was introduced by Gadea
and Oubiña:

Definition 2.1 ([9]). A homogeneous pseudo-Riemannian structure on (M, g) is a tensor field T of type (1, 2) on M ,
such that the connection ∇̃ = ∇ − T satisfies

∇̃g = 0, ∇̃ R = 0, ∇̃T = 0. (2.1)

The geometric meaning of the existence of a homogeneous pseudo-Riemannian structure is explained by the
following

Theorem 2.2 ([9]). Let (M, g) be a connected, simply connected and complete pseudo-Riemannian manifold. Then,
(Mg) admits a pseudo-Riemannian structure if and only if it is a reductive homogeneous pseudo-Riemannian
manifold.

It must be noted that any homogeneous Riemannian manifold is reductive, while a homogeneous pseudo-
Riemannian manifold need not be reductive. We now recall briefly the essential steps of the proof of Theorem 2.2,
referring the reader to [9] for further details.

Assume first that (M = G/H, g) is a homogeneous reductive pseudo-Riemannian manifold, G and H being a
group of isometries acting transitively and effectively on (M, g) and the isotropy group at an arbitrary point p ∈ M ,
respectively. Let α belong to the Lie algebra g of G and α∗ be the vector field on M generated by the one-parameter
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group of isometries {exp(tα) : t ∈ R}. The Lie algebra of the isotropy group H is h = {α ∈ g : α∗
p = 0}. As is well

known, M = G/H being reductive means that g = h ⊕ m and m is stable under Ad(H).
The canonical connection ∇̃ associated with the reductive decomposition g = h ⊕ m is uniquely determined by

(∇̃α∗β∗)p = [α∗, β∗
]p = −[α, β]

∗
p,

for all α, β ∈ g.
Then, the difference tensor field T = ∇ − ∇̃ is a homogeneous pseudo-Riemannian structure on (M, g).
Conversely, the existence of a pseudo-Riemannian homogeneous structure T on (M, g) leads to the existence of a

connection ∇̃ = ∇ − T on M , which is complete and ensures the existence, given two points p, q ∈ M , of a global
isometry mapping p to q . Then, there exists a group G of isometries acting transitively on M , such that M = G/H is
reductive, and ∇̃ is the canonical connection associated with this reductive decomposition.

Note that two different homogeneous structures T1 and T2 on a pseudo-Riemannian homogeneous manifold (M, g),
can give rise to the same Lie algebra g with different decompositions: g = m1⊕h1 = m2⊕h2. Different homogeneous
structures T1 and T2 on (M, g) can also give non-isomorphic Lie algebras g1 and g2 [19, p. 36].

We want to emphasize here the special case when for all α, β ∈ g, we have ∇̃α∗β∗
= 0 or, in other words,

Tα∗β∗
= ∇α∗β∗. Let A denote the Kostant operator, defined, for any tangent vector field X on M , by

AX Y = −∇Y X.

If α∗
p = 0 and (Aα∗)p = 0, then α = 0, since the representation ρ of h in Tp M , defined by ρ(α) = −(Aα∗)p, is

faithful [9, p. 452].
Assume now that ∇̃α∗β∗

= 0 for all α, β ∈ g and consider α ∈ h. Then, by definition, α∗
p = 0. Moreover, we have

0 = (∇̃α∗β∗)p = [α∗, β∗
]p,

for all β ∈ g. Since ∇ is the Levi-Civita connection of M and α∗
p = 0, we then have

0 = [α∗, β∗
]p = ∇α∗

pβ
∗

− ∇β∗
pα

∗
= −∇β∗

pα
∗

= (Aα∗)pβ
∗.

Consider Y ∈ Tp M . Since G acts transitively on M , there exists β ∈ g such that β∗
p = Y . Therefore, (Aα∗)pY =

(Aα∗)pβ
∗

= 0, for any Y , that is, (Aα∗)p = 0 and so, α = 0.
Thus, when ∇̃α∗β∗

= 0, we have that h = 0 and so, M itself carries a Lie group structure, unique up to
isomorphisms. In this way, we proved the following

Lemma 2.3. Let (M, g) be a connected, simply connected and complete pseudo-Riemannian manifold. If M admits
a homogeneous pseudo-Riemannian structure T such that TX Y = ∇X Y for all X, Y vector fields tangent to M, then
M has a Lie group structure, unique up to isomorphisms, and g is left-invariant.

3. Three-dimensional homogeneous Lorentzian structures

Let (M, g) be a connected three-dimensional Lorentzian manifold. Its curvature tensor is completely determined
by the Ricci tensor %, defined, for any point p ∈ M and X, Y ∈ Tp M , by

%(X, Y )p =

3∑
i=1

εi g(R(X, ei )Y, ei ),

where {e1, e2, e3} is a pseudo-orthonormal basis of Tp M and εi = g(ei , ei ) = ±1 for all i . Throughout the paper, if
not stated otherwise, we shall assume that e3 is timelike, that is, g(e1, e1) = g(e2, e2) = −g(e3, e3) = 1. Because
of the symmetries of the curvature tensor, the Ricci tensor % is symmetric [12]. So, the Ricci operator Q, defined by
g(Q X, Y ) = %(X, Y ), is self-adjoint. In the Riemannian case, there always exists an orthonormal basis diagonalizing
Q, while in the Lorentzian case four different cases can occur ([12, p. 261], [3]), and there exists a pseudo-orthogonal
basis {e1, e2, e3}, with e3 timelike, such that Q takes one of the following forms, called Segre types:

Segre type {11, 1} :

a 0 0
0 b 0
0 0 c

 , Segre type {1zz̄} :

a 0 0
0 b c
0 −c b

 , (3.1)
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Segre type {21} :

a 0 0
0 b ε

0 −ε b − 2ε

 , Segre type {3} :

b a −a
a b 0
a 0 b

 .

When (M, g) is curvature homogeneous (up to order zero), Q has the same Segre type at any point p ∈ M and
has constant eigenvalues. Moreover, if (M, g) is curvature homogeneous up to order two, starting from a pseudo-
orthonormal basis {(ei )p} at a fixed point p, we can use the linear isometries from Tp M into the tangent spaces at
any other point, to construct a pseudo-orthonormal frame field {ei }, such that the components of %, ∇% and ∇

2% with
respect to {ei } remain constant along M . With respect to such a frame field {ei }, we now put

∇ei e j =

∑
k

ε j Bi jkek . (3.2)

Clearly, the functions Bi jk determine completely the Levi-Civita connection, and conversely. Note that from ∇g = 0
it follows at once that

Bik j = −Bi jk, (3.3)

for all i, j, k. In particular,

Bi j j = 0 (3.4)

for all indices i and j . We are now ready to give the

Proof of Theorem 1.1. Let (M, g) be a connected, simply connected and complete three-dimensional homogeneous
Lorentzian manifold, and {ei } a global pseudo-orthonormal frame field on M , such that the components of %, ∇% and
∇

2% with respect to {ei } are globally constant. Easy calculations show that

∇i% jk = −

∑
t

(ε j Bi j t%tk + εk Bikt%t j ) (3.5)

and

∇
2
ri% jk = −

∑
t

(εi Bri t∇t% jk + ε j Br j t∇i%tk + εk Brkt∇i%t j ), (3.6)

for all indices i, j, k, r . We want to prove that whenever (M, g) is not symmetric, there exists a homogeneous
Lorentzian structure T such that TX Y = ∇X Y for all X, Y vector fields tangent to M . Then, by Lemma 2.3, M
is a Lie group and g a left-invariant Lorentzian metric. To prove the existence of such a tensor T , it is enough to show
that, with respect to a suitable pseudo-orthonormal frame field {ei }, all Bi jk are constants. Then, we can define T by

Tei :=
1
2

∑
jk

Bi jke j ∧ ek, (3.7)

for all i , where e j ∧ ek(X) = g(e j , X)ek − g(ek, X)e j . From (3.7) it follows at once that Tei e j = ∇ei e j for all i, j .
So, ∇̃ei e j = ∇ei e j − Tei e j = 0 for all i, j . Moreover, ∇̃ satisfies conditions (2.1) of Definition 2.1, and we can apply
Lemma 2.3 to conclude that M is a Lie group and g a left-invariant Lorentzian metric.

Note that the constancy of all Bi jk is equivalent to the constancy of all g([ei , e j ], ek), since the well known Koszul
formula yields

2ε jεk Bi jk = 2g(∇ei e j , ek) = g([ei , e j ], ek) − g([e j , ek], ei ) + g([ek, ei ], e j ). (3.8)

We shall treat separately different cases, according with the Segre type of the Ricci operator of (M, g).
(I) Segre type {11, 1}.
In this case, Q is diagonal, that is, %i j = εiδi j qi , for all i, j , where q1 = a, q2 = b and q3 = c denote the eigenvalues
of Q. Hence, (3.5) simplifies as follows:

∇i% jk = −ε jεk(q j − qk)Bi jk . (3.9)

In particular, from (3.9) we get that ∇i% j j = 0 for all i, j . When a = b = c, (M, g) is an Einstein manifold and so,
being three-dimensional, it has constant sectional curvature. In particular, it is symmetric. Then, we are left with the
following cases:
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I(a) a 6= b 6= c 6= a. In this case, q j − qk is different from zero for all j 6= k and so, by (3.9) it follows at once that
Bi jk is constant for all j 6= k. Taking into account (3.4), all Bi jk are then constant.

I(b) a = b 6= c. Writing (3.9) with ( j, k) = (1, 2) we get ∇i%12 = 0, while for ( j, k) = (1, 3) and ( j, k) = (2, 3)

we respectively obtain that Bi13 and Bi23 are constant for all i . We shall prove that, unless (M, g) is symmetric, there
exists a suitable pseudo-orthonormal frame field {ei } with respect to which also the Bi12 are constant for all i .

(M, g) being homogeneous, the scalar curvature τ is constant. Hence, from the well known formula dτ =

2div% [12, p. 88], we get

0 = ei (τ ) = 2
∑

j

∇ j%i j , (3.10)

for all i = 1, 2, 3. Writing (3.10) for i = 1, 2, 3, we get

∇1%13 + ∇2%23 = ∇3%13 = ∇3%23 = 0,

that is, by (3.9),

B113 + B223 = B313 = B323 = 0. (3.11)

Since B313 = B323 = 0, the integral curves of e3 are geodesic. Therefore, we can choose {ei } so that ∇e3 ei = 0, that
is, B3i j = 0 for all i, j . Since e1, e2 are spacelike, the rest of this case can be treated exactly like the corresponding
Riemannian case in [16]. We report here these arguments, referring the reader to [16] for more details.

We write (3.6) for (i, j, k) = (1, 2, 3) and for (i, j, k) = (2, 2, 3). Taking into account (3.11), we get{
(∇1%13 − ∇2%23)Br12 = ∇

2
r1%23 + ∇3%23 Br13,

(∇1%23 + ∇2%13)Br12 = ∇
2
r2%23 + ∇3%23 Br23.

(3.12)

Since all the components of % and ∇% are constant, from (3.12) it follows that the Br12 are constant, unless
∇1%13 = ∇2%23 and ∇1%23 = −∇2%13. In the last case, from (3.9) and (3.11) we then get B113 = B223 = 0 (and
so, ∇1%13 = ∇2%23 = 0) and B213 = −B123 (that is, ∇1%13 = −∇1%23). Summarizing, the only possibly non-zero
components of ∇% are

∇1%23 = ∇1%32 = −∇2%13 = −∇2%31 = (c − a)α,

where α = B123 is a constant. In particular, if α = 0, then (M, g) is locally symmetric. In the sequel, we then assume
α 6= 0, and consider the system of partial differential equations

e1η = B112, e2η = B212, e3η =
a − c

2α
. (3.13)

We can compute R(ei , e j )ek both as a function of the Ricci components and using the covariant derivatives ∇ei e j .
Comparing the corresponding expressions, standard calculations give2α2

= −a,

e1(B212) − e2(B112) + B2
112 + B2

212 + a − c = 0,

e3(B212) − αB112 = 0.

(3.14)

Using (3.14), it is easy to check that [ei , e j ]η = ei (e jη) − e j (eiη), for all i, j . Hence, a basic theorem on partial
differential equations ensures that (3.13) admits a unique solution under an initial condition η0 = η(p), with p ∈ M .
For such a solution η of (3.13), we can construct a new pseudo-orthonormal frame {e∗

i }, defined by

e∗

1 = (cos η)e1 − (sin η)e2, e∗

2 = (sin η)e1 + (cos η)e2, e∗

3 = e3, (3.15)

and it is easy to check that

B∗

123 = −B∗

132 = −B∗

213 = B∗

231 = α, B∗

312 = −B∗

321 = −
a − c

2α
,

and B∗

i jk = 0 in all the other cases. Therefore, all B∗

i jk are constant.
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I(c) a 6= b = c. We could proceed as in the previous case and show, by direct calculations, that there always exists
a pseudo-orthonormal frame field {ei } such that all Bi jk are constant. However, it is enough to prove it when

∇e1 e1 = 0, ∇e2e1 = αe3, ∇e3e1 = αe2,

∇e1e2 = 0, ∇e2e2 = B223e3, ∇e3e2 = −αe1 + B323e3,

∇e1e3 = 0, ∇e2e3 = αe1 + B223e2, ∇e3 e3 = B323e3,

(3.16)

where α = B213 is a constant and B223, B323 are functions.
In fact, in all the other cases, three-dimensional homogeneous Lorentzian manifolds (M, g), having a diagonal

Ricci tensor with eigenvalues q1 6= q2 = q3, admit a pseudo-orthonormal frame field {ei } with all Bi jk constant [3,
pp. 97–100].

We complete this case by proving that even when (3.16) holds, there exists a pseudo-orthonormal frame field {e∗

i }

such that all B∗

i jk are constant. The argument is similar to the one used in the previous case.
We first note that, by (3.9) and (3.16), if α = 0, then ∇i% jk = 0 for all i, j, k, that is, (M, g) is locally symmetric.

Therefore, we now assume α 6= 0, and consider the system of partial differential equations

e1η = −
b

2α
, e2η = B223, e3η = B323. (3.17)

We can compute the curvature components both as a function of the Ricci components and starting from (3.16).
Comparing the corresponding expressions, we obtain2α2

= −c,
e2(B323) − e3(B223) − B2

223 + B2
323 + b = 0,

e1(B323) − αB223 = e1(B223) − αB323 = 0.

(3.18)

Because of (3.18), we have [ei , e j ]η = ei (e jη) − e j (eiη), for all i, j . Hence, (3.17) admits a unique solution under
an initial condition η0 = η(p), with p ∈ M . If η is such a solution of (3.17), we put

e∗

1 = e1, e∗

2 = (cosh η)e1 − (sinh η)e2, e∗

3 = (sinh η)e1 − (cosh η)e2. (3.19)

Then, one can easily check that {e∗

i } is again a pseudo-orthonormal frame (with e∗

3 timelike), and

B∗

123 = −B∗

132 = −
b

2α
, B∗

213 = −B∗

231 = B∗

312 = −B∗

321 = −α,

while B∗

i jk = 0 in all the other cases. Therefore, all B∗

i jk are constant.
(II) Segre type {1zz̄}.
In this case, %11 = a, %22 = %33 = b, %12 = %13 = 0 and %23 = c 6= 0. Writing (3.5) for ( j, k) = (2, 2), (1, 2) and
(1, 3), we easily get∇i%22 = −2cBi23,

∇i%12 = (a − b)Bi12 − cBi13,

∇i%13 = −cBi12 − (a − b)Bi13.

(3.20)

Since c 6= 0 and all ∇i% jk are constant, (3.20) implies at once that the Bi jk are constant whenever j 6= k. This,
together with (3.4), implies that all Bi jk are constant.
(III) Segre type {21}.
In this case, %11 = a, %22 = b, %33 = b + 2ε, %12 = %13 = 0 and %23 = 1, where ε = ±1. When a − b 6= ε, we can
proceed as in the previous case. In fact, we write (3.5) for ( j, k) = (2, 2), (1, 2) and (1, 3) and we get∇i%22 = −εBi23,

∇i%12 = (a − b)Bi12 − εBi13,

∇i%13 = −εBi12 − (a − b)Bi13.

(3.21)
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If a − b 6= ε, (3.21) implies that the Bi jk are constant for j 6= k and so, for all i, j , taking into account (3.4). Then,
we are left with the case when a − b 6= ε. Writing (3.5) for all possible j, k, we easily get∇i%11 = 0,

∇i%22 = ∇i%33 = ∇i%23 = −εBi23,

∇i%12 = ∇i%13 = −ε(Bi12 + Bi13),

(3.22)

for all i . In particular,

Bi23 = constant, Bi12 + Bi13 = constant, (3.23)

for all i . From the divergence formula (3.10), using (3.22) we now get

B212 + B213 = −(B312 + B313) = 0, B112 + B113 = −ε(B223 + B323). (3.24)

Next, we write (3.6) for ( j, k) = (1, 2) and (2, 2) and we obtain

∇
2
ri%12 = −εi Brit∇t%12 − ∇i%22(Br12 + Br13) − Br23∇i%13,

∇
2
ri%22 = −εi Brit∇t%22 + 2Br12∇i%12 − 2Br23∇i%23,

that is, taking into account (3.23),

εi Brit∇t%12 = constant, (3.25)
εi Brit∇t%22 − 2Br12∇i%12 = constant. (3.26)

We write (3.25) for (r, i) = (1, 1), (2, 2) and (3, 3) and we obtain that B112∇1%12, B212∇1%12 and B313∇1%12 are
constant. If ∇1%12 6= 0, this implies that B112, B212 and B313 are constant and so, by (3.23) and (3.4), all Bi jk are
constant. Hence, we are left with the case when ∇1%12 = 0, that is, B112 + B113 = 0.

From (3.26), for i = 1 and taking into account ∇1%12 = 0, we now have

Br12∇2%22 + Br13∇3%22 = constant,

that is, by (3.22),

εB223(Br13 − Br12) = constant. (3.27)

If B223 6= 0, (3.27) and (3.23) imply at once that Br12, Br13 are constant for all r . So, in the sequel we also
assume B223 = 0. From the second equation in (3.24) we get B323 = 0 (since B112 + B113 = 0). So, (3.22) yields
∇2%i j = ∇3%i j = 0 for all i, j . Finally, using this information in (3.26) for i = 2, we now get

−Br12∇1%22 = εi Br2t∇t%22 − 2Br12∇2%12 = constant. (3.28)

If ∇1%22 6= 0, then (3.28) implies that the Br12 are constant and, by (3.23), also the Br13 are constant and the
conclusion follows. On the other hand, if ∇1%22 = 0, then ∇i% jk = 0 for all i, j, k, that is, (M, g) is symmetric.
(IV) Segre type {3}. In this case, %11 = %22 = %33 = b, %12 = −%13 = a 6= 0 and %23 = 0. We now write (3.5) for
( j, k) = (1, 2), (2, 2) and (3, 3) and we get∇i%12 = aBi23,

∇i%22 = 2aBi12,

∇i%33 = 2aBi13.

(3.29)

Therefore, taking into account (3.3) and (3.4), the Bi jk are constant for all j, k and this ends the proof. �

Remark. A three-dimensional Lorentzian manifold (M, g) is locally homogeneous if and only if it is curvature
homogeneous up to order two [3, Remarks 1,2,3]. From Theorem 1.1, we then get at once the following

Theorem 3.1. Let (M, g) be a three-dimensional Lorentzian manifold. The following conditions are equivalent:

(i) (M, g) is curvature homogeneous up to order two;
(ii) (M, g) is locally homogeneous;

(iii) (M, g) is either locally symmetric or locally isometric to a Lie group equipped with a left-invariant Lorentzian
metric.
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4. The classification of three-dimensional homogeneous Lorentzian manifolds

Rahmani [15] classified three-dimensional unimodular Lie groups equipped with a left-invariant Lorentzian metric,
obtaining a result corresponding to the one found by Milnor [11] in the Riemannian case. Earlier, Cordero and
Parker [8] already studied three-dimensional Lie groups equipped with left-invariant Lorentzian metrics, determining
their curvature tensors and investigating the symmetry groups of the sectional curvature in the different cases. In
particular, they wrote down the possible forms of a non-unimodular Lie algebra. Taking into account these results and
Theorem 1.1, we obtain the following:

Theorem 4.1. Let (M, g) be a three-dimensional connected, simply connected, complete homogeneous Lorentzian
manifold. If (M, g) is not symmetric, then M = G is a three-dimensional Lie group and g is left-invariant. Precisely,
one of the following cases occurs:

• If G is unimodular, then there exists a pseudo-orthonormal frame field {e1, e2, e3}, with e3 timelike, such that the
Lie algebra of G is one of the following:
(a)

[e1, e2] = αe1 − βe3,

(g1): [e1, e3] = −αe1 − βe2,

[e2, e3] = βe1 + αe2 + αe3 α 6= 0.

(4.1)

In this case, G = O(1, 2) or SL(2, R) if β 6= 0, while G = E(1, 1) if β = 0.
(b)

[e1, e2] = γ e2 − βe3,

(g2): [e1, e3] = −βe2 + γ e3, γ 6= 0,

[e2, e3] = αe1.

(4.2)

In this case, G = O(1, 2) or SL(2, R) if α 6= 0, while G = E(1, 1) if α = 0.
(c)

[e1, e2] = −γ e3,

(g3): [e1, e3] = −βe2,

[e2, e3] = αe1.

(4.3)

Table 1 lists all the Lie groups G which admit a Lie algebra g3, taking into account the different possibilities
for α, β and γ .

Table 1
Unimodular Lie groups with Lie algebra g3

G α β γ

O(1, 2) or SL(2,R) + + +

O(1, 2) or SL(2,R) + − −

SO(3) or SU (2) + + −

E(2) + + 0
E(2) + 0 −

E(1, 1) + − 0
E(1, 1) + 0 +

H3 + 0 0
H3 0 0 −

R⊕ R⊕ R 0 0 0

(d)
[e1, e2] = −e2 + (2ε − β)e3, ε = ±1,

(g4): [e1, e3] = −βe2 + e3,

[e2, e3] = αe1.

(4.4)

Table 2 describes all Lie groups G admitting a Lie algebra g4.
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Table 2
Unimodular Lie groups with Lie algebra g4

G (ε = 1) α β G (ε = −1) α β

O(1, 2) or SL(2,R) 6=0 6=1 O(1, 2)or SL(2,R) 6=0 6=−1
E(1, 1) 0 6=1 E(1, 1) 0 6=−1
E(1, 1) <0 1 E(1, 1) >0 −1
E(2) >0 1 E(2) <0 −1
H3 0 1 H3 0 −1

• If G is non-unimodular, then there exists a pseudo-orthonormal frame field {e1, e2, e3}, with e3 timelike, such that
the Lie algebra of G is one of the following:
(e)

[e1, e2] = 0,

(g5): [e1, e3] = αe1 + βe2,

[e2, e3] = γ e1 + δe2, α + δ 6= 0, αγ + βδ = 0.

(4.5)

(f)
[e1, e2] = αe2 + βe3,

(g6): [e1, e3] = γ e2 + δe3, α + δ 6= 0, αγ − βδ = 0,

[e2, e3] = 0.

(4.6)

(g)
[e1, e2] = −αe1 − βe2 − βe3,

(g7): [e1, e3] = αe1 + βe2 + βe3,

[e2, e3] = γ e1 + δe2 + δe3, α + δ 6= 0, αγ = 0.

(4.7)

Proof. By Theorem 1.1, if M is not symmetric, then it is isometric to a three-dimensional Lie group G equipped with
a left-invariant Lorentz metric. Assume first that there exists a linear mapping from g to R, such that

[x, y] = l(x)y − l(y)x, (4.8)

for all x, y ∈ g. Then, any Lorentzian metric on G has constant sectional curvature, and this constant can be any real
number [13, Theorem 1]. In particular, G is symmetric. So, in the sequel we shall assume G does not satisfy (4.8).

In [15], Rahmani introduced a cross-product X×Y adapted to the Lorentzian environment, and the four possibilities
Rahmani found for the unimodular Lie algebras (g1)–(g4), correspond to the four possible forms of the self-adjoint
transformation L , defined by

[X, Y ] = L(X × Y ).

Following [8], cases (g5)–(g7) are the possible forms of the non-unimodular Lie algebra of a three-dimensional
Lorentzian Lie group, rewritten here for a Lorentzian metric of signature (+, +, −) and a pseudo-orthonormal frame
field {e1, e2, e3} with e3 timelike. The determinant D =

4(αδ−βγ )

(α+δ)2 provides a complete isomorphism invariant for Lie
algebras (g5)–(g7). �

5. Three-dimensional Lorentzian symmetric spaces

We can now complete the classification of three-dimensional homogeneous Lorentzian manifolds, by classifying
the symmetric ones.

Let (M, g) be a three-dimensional Lorentzian symmetric space. We can consider separately two cases.
(A) (M, g) is not isometric to a three-dimensional Lie group.

Following the proof of Theorem 1.1, we see that this can only happen for some of the possible forms of the Ricci
operator. More precisely, one of the following cases must occur.
(A1) The Ricci operator of (M, g) is diagonal with eigenvalues q1 = q2 = q3.
Therefore, (M, g) is a three-dimensional Einstein space and so, it has constant sectional curvature. If M is connected
and simply connected, then (M, g) is one of the Lorentzian space forms S3

1 , R3
1 or H3

1, of positive, null and negative
constant sectional curvature, respectively [12].
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(A2) The Ricci operator of (M, g) is diagonal and has eigenvalues q1 = q2 6= q3, and Bi jk = 0 for all
(i, j, k) 6= (1, 1, 2) or (2, 1, 2).
Note that ∇ei e3 = 0 for all i . Therefore, e3 is a timelike parallel vector field and so, M is reducible as a direct product
M2

× R, where M2 is a Riemannian surface. Since M is symmetric, M2 itself is symmetric and so, it has constant
sectional curvature. If M is connected and simply connected, (M, g) is then isometric to either S2

× R or H2
× R.

(A3) The Ricci operator of (M, g) is diagonal and has eigenvalues q1 6= q2 = q3, and Bi jk = 0 for all
(i, j, k) 6= (2, 2, 3) or (3, 2, 3).

This case is very similar to the previous one. In fact, ∇ei e1 = 0 for all i . Thus, e1 is a spacelike parallel vector
field and M is reducible as a direct product R × M2

1 , where M2
1 is a Lorentzian surface. Since M is symmetric, also

M2
1 is symmetric and so, it has constant sectional curvature. When M is connected and simply connected, (M, g) is

isometric to either R × S2
1 or R × H2

1.
(A4) The Ricci operator of (M, g) is of Segre type {21} with a − b = ε, and

∇e1e1 = B112e2 − B112e3, ∇e2 e1 = B212e2 − B212e3, ∇e3e1 = B312e2 − B312e3,

∇e1 e2 = −B112e1, ∇e2e2 = −B212e1, ∇e3 e2 = −B312e1,

∇e1 e3 = −B112, ∇e2e3 = −B212e1, ∇e3 e3 = −B312e1.

(5.1)

Put u = e2 − e3. Then, ∇ei u = 0 for all i , that is, u is a parallel null vector field. Three-dimensional symmetric
spaces admitting a parallel null vector field were completely classified in [7]. A three-dimensional locally symmetric
Lorentzian manifold (M, g), having a parallel null vector field, admits local coordinates (t, x, y) such that, with
respect to the local frame field {( ∂

∂t ), (
∂
∂x ), ( ∂

∂y )}, the Lorentzian metric g and the Ricci operator are given by

g =

0 0 1
0 ε 0
1 0 f

 , Q =

0 0 −
1
ε
α

0 0 0
0 0 0

 , (5.2)

where ε = ±1, u = ( ∂
∂t ) and

f (x, y) = x2α + xβ(y) + ξ(y), (5.3)

for any constant α ∈ R and any functions β, ξ [7, Theorem 6]. It is easy to build a (local) pseudo-orthonormal frame
field from {( ∂

∂t ), (
∂
∂x ), ( ∂

∂y )}, and to check that, whenever α f 6= 0 (that is, g is not flat), the Ricci operator described
by (5.2) is of Segre type {21}.
(B) (M = G, g) is a three-dimensional Lie group.

In this case, M is one of the Lie groups listed in Theorem 4.1. The case described by (4.8) is trivial, since
all Lorentzian metrics have constant sectional curvature. For all the remaining cases (g1)–(g7), we can determine
the covariant derivatives using (3.8). Then, we can compute the curvature components and, by (3.5) and (3.6), the
components of % and ∇%. Obviously, the symmetric cases are exactly the ones for which all components of ∇%

vanish.
All these calculations are long but very standard, and will be inserted in detail in a forthcoming paper [5], in which

we shall also consider Einstein-like Lorentzian metrics on three-dimensional homogeneous Lorentzian manifolds. We
report here the conclusions we obtain in the different cases.
(B1) A three-dimensional Lorentzian Lie group G, having either g1 or g2 as Lie algebra, is never symmetric. In fact,
in the case of g1, we easily get that G is symmetric if and only if α = 0, which contradicts (4.1). In a similar way, in
the case of g2, we get γ = 0, against (4.2).
(B2) When (G, g) has a Lie algebra of diagonal type g3, G is symmetric if and only if(q2 − q3)(α − β − γ ) = 0,

(q1 − q3)(α − β + γ ) = 0,

(q1 − q2)(α + β − γ ) = 0,

(5.4)

where q1, q2, q3 are the Ricci eigenvalues (which depend on α, β, γ ). Taking into account Table 1, we obtain that
(5.4) holds if and only if one of the following cases occurs:
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• α = β = γ . If α 6= 0, then G = O(1, 2) or SL(2, R) and g has negative constant sectional curvature −
α2

4 . If
α = 0, we find G = R ⊕ R ⊕ R (and g is flat).

• α − γ = β = 0. In this case, G = E(1, 1) and g is flat.
• α − β = γ = 0. Then, G = E(2) and g is flat.

(B3) When (G, g) has a Lie algebra of type g4, it is symmetric if and only if
(α + 2ε − 2β)2

= 0,

α(4β − 4ε − 3α) = 0,

α(α2
− αβ − 2εα + 4εβ − 4) = 0,

α(α2
− αβ + 4εα − 4εβ + 4) = 0.

(5.5)

From (5.5) it follows that G is symmetric if and only if α = β − ε = 0. In this case, taking into account Table 2, we
have G = H3. Moreover, g is flat.
(B4) A Lie group (G, g), having a Lie algebra of type g5, is symmetric if and only if

αγ + βδ = 0
α(δ2

− αδ + βγ + γ 2) = 0,

(β + γ )(α2
− αδ + β2

+ βγ ) = 0,

(β + γ )(δ2
− αδ + βγ + γ 2) = 0,

δ(α2
− αδ + β2

+ βγ ) = 0,

(β − γ )βδ = 0,

(β − γ )(γ 2
− β2

+ δ2
− α2) = 0.

(5.6)

(The first equation of (5.6) comes from (4.5).) Taking into account α + δ 6= 0, (5.6) is satisfied if and only if one of
the following cases occurs:

• β = γ = δ = 0 and α 6= 0. In this case, e2 is a spacelike parallel vector field and so, G is reducible. Since the
Ricci eigenvalues are q1 = q3 = α2 and q2 = 0, G is locally isometric to R × S2

1 .
• α = β = γ = 0 and δ 6= 0. In this case, e1 is a spacelike parallel vector field, G is reducible and the Ricci

eigenvalues are q1 = 0 and q2 = q3 = 0. So, G is locally isometric to R × S2
1 .

• β + γ = 0 and δ = α 6= 0. In this case, q1 = q2 = q3 = 2α2. Hence, G has constant sectional curvature α2 > 0.

(B5) A Lie group (G, g), having a Lie algebra of type g6, is symmetric if and only if

αγ − βδ = 0,

(β + γ )(δ2
− α2

+ β2
− γ 2) = 0,

α(δ2
− αδ + βγ − γ 2) = 0,

(β − γ )(αδ − α2
+ β2

− βγ ) = 0,

(β − γ )(δ2
− αδ + βγ − γ 2) = 0,

δ(αδ − α2
+ β2

− βγ ) = 0.

(5.7)

Standard calculations show that (5.7) holds if and only if one of the following cases occurs:

• α = β = γ = 0 and δ 6= 0. In this case, G is reducible (e2 is a spacelike parallel vector field) and the Ricci
eigenvalues are q1 = q3 = −δ2 < 0 and q2 = 0. Hence, G is locally isometric to R × H2

1.
• β = γ = δ = 0 and α 6= 0. Then, G is reducible, because e3 is a timelike parallel vector field. Since the Ricci

eigenvalues are q1 = q2 = −α2 < 0 and q3 = 0, G is locally isometric to H2
× R.

• γ = β and δ = α 6= 0. In this case, the Ricci tensor is diagonal and q1 = q2 = q3 = −2α2. Hence, G has constant
sectional curvature −α2 < 0.

• β = εα and γ = εδ, with α + δ 6= 0 and ε = ±1. In this case, the Ricci tensor is diagonal and
q1 = q2 = q3 = −

(α+δ)2

2 . Hence, G has constant sectional curvature −
(α+δ)2

4 < 0.
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(B6) When a Lorentzian Lie group (G, g) has a Lie algebra of type g7, it is symmetric if and only if

αγ = 0,

βγ 2
= 0,

δ(α2
− αδ + βγ ) = 0,

γ 2(γ − 3β) = 0,

γ 2(γ + 3β) = 0,

(5.8)

Since α + δ 6= 0, (5.8) is satisfied if and only if one of the following cases occurs:

• α = γ = 0 and δ 6= 0. In this case, q1 = q2 = q3 = 0, that is, G is flat.
• either γ = δ = 0 and α 6= 0, or γ = 0 and α = δ 6= 0. The Ricci components are %11 = 0, %22 = −%33 = −α2,

%12 = %13 = 0 and %23 = α2, that is, the Ricci tensor is of Segre type {21}. Moreover, u = e2 + e3 is a parallel
null vector field. Therefore, g is described by (5.2) and (5.3).

Therefore, we proved the following

Theorem 5.1. A connected, simply connected three-dimensional Lorentzian symmetric space (M, g) is either

(i) a Lorentzian space form S3
1 , R3

1 or H3
1, or

(ii) a direct product R × S2
1 , R × H2

1, S2
× R or H2

× R, or
(iii) a space with a Lorentzian metric g described by (5.2) and (5.3).

Three-dimensional unimodular Lie groups, having a flat Lorentzian metric, have been classified in [13] (see also
[15]). Our analysis above leads to the following extension:

Theorem 5.2. Let (G, g) be a three-dimensional Lorentzian Lie group and g its Lie algebra. Apart from the trivial
case described by (4.8), we have:

(a) (G, g) is flat if and only if
• g = g3 and either G = R ⊕ R ⊕ R with α = β = γ = 0, G = E(1, 1) with α − γ = β = 0, or G = E(2) with

α − β = γ = 0, or
• g = g4 and G = H3 with α = β − ε = 0, or
• g = g7 with either α = γ = 0 and δ 6= 0, or γ = 0 and α = δ 6= 0.

(b) (G, g) has positive constant sectional curvature if and only if g = g5 with β + γ = 0 and δ = α 6= 0.
(c) (G, g) has negative constant sectional curvature if and only if

• g = g3 and G = O(1, 2) or SL(2, R) with α = β = γ 6= 0, or
• g = g6 with either γ = β and δ = α 6= 0, or β = εα and γ = εδ (with α + δ 6= 0 and ε = ±1).

References

[1] W. Ambrose, I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647–669.
[2] P. Bueken, Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures ρ1 = ρ2 6= ρ3, J. Math. Phys. 38 (1997)

1000–1013.
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